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ANALYTICAL METHOD FOR DETERMINING THE STABILITY 

OF LINEAR RETARDED SYSTEMS WITH TWO DELAYS 

L. Keith Barker 
Langley Research Center 

J. L. Whitesides 
The George Washington University 

Joint Institute for Acoustics and Flight Sciences 

SUMMARY 

Differential-difference equations occur in various branches of science. The sta- 
bility of these equations, however, i s  much more  difficult t o  determine than that of ordi-  
nary differential equations. In this paper the stability of differential-difference equations 
of the retarded type with constant coefficients and two constant t ime delays i s  considered, 
A new method that makes use of analytical expressions to  determine stability boundaries, 
and hence the stability of the equations, i s  derived. The basis of the method consists in 
deriving analytical equations for each of the delays which correspond to  the purely imag- 
inary roots of the characteri,stic quasi -polynomial. 

The method developed i s  used to  analyze the stability of a second-order differential 
equation with delays in the velocity and displacement te rms .  The resulting stability re- 
gions are in agreement with those obtained by other investigators. 

INTRODUCTION 

A differential-difference equation of the retarded type i s  basically a differential 
equation in which the highest order derivative of the dependent variable contains no delay 
in i ts  argument (time), but any of its other derivatives o r  the dependent variable itself 
may have delays. Such equations arise when the future state of a system depends not 
only on i t s  present  state but a lso on par t  of i ts  past history. (See refs. 1 to 5.) 

One of the major obstacles encountered in dealing with systems with delays i s  the 
stability analysis. Moreover, it appears that practical applications of such systems have 
been limited thus far to one and two delays. A convenient method i s  developed in refer- 
ence 6 to  examine the stability in the delay space for  a linear, t ime invariant differential- 
difference equation of the retarded type with one constant delay. This method, which i s  
somewhat s imi la r  to  the method of reference 7, is extended in reference 8 to many con- 



stant delays. In particular, stability boundaries in the delay space for a retarded system 
with two delays can be constructed by using the method of reference 8. However, the 
points on the boundaries are found by an indirect procedure which involves searching for  
the roots of transcendental equations. (This i s  not the case f o r  one delay.) 

The purpose of the present study i s  to  develop explicit analytical equations for  con- 
structing stability boundaries in the delay space for  retarded systems with two constant 
delays. This report i s  based on work that has been completed as par t  of L. Keith 
Barker 's  doctoral research  program with The George Washington University. 

SYMBOLS 

A,AZ N X N matr ices  of real constants 

a,b, c real constants 

a1l,a12,a2lla22 rea l  constants 

B N X m matrix of real constants 

bll,b12,b2l,b22 r ea l  constants 

C positive scalar function of o (see eq. (43)) 

I N X N identity matrix 

i imaginary unit, J--r 
j , k,Z, m,n integers 

integer associated with O j  Kj 

L(s) ,L (s ,e j) characterist ic quasi -polynomial of retarded system 

LO(S) resulting polynomial when delays are made zero in L(s) 

M number of delays in system 
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N dimension of system 

P(s),Q(s),R(s) polynomials in s with real constant coefficients 

angles defined in figure 1 

complex variable, (T + iw 

root of L s,OJ 

t ime or  independent variable 

nondimensional t ime 

m x 1 vector forcing function 

integer associated with O j  

( *> 

sca la r  function of t ime 

N X 1 state vector 

defined by equations (14) and (1 5), respectively 

-io0 1 (see fig. (1)) argument of Q(iw) e 

argument of P(iw) (see fig. (1)) 

-iwO 2 
argument of R(iw) e (see fig. (1)) 

smal l  positive numbers 

damping parameter  

real and constant delays 

radius  of small  c i rcular  contour around any root of L(s,Oj) 
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U real par t  of complex variable s 

T , T ~ , T ~ , T ~  rea l  and constant t ime delays 

w imaginary par t  of complex variable s 

wm largest  positive real root of equation (20) 

Mathematical notations : 

I I  absolute values or  magnitude 

a rg  argument 

de t determinant 

min minimum value 

A small  incremental value 

Dots over a symbol denote derivatives with respect t o  t ime. 

ANALYSIS 

Retarded Systems 

The state equation for  a physical system is sometimes written in the form 

M 
?(t) = A z ( t )  + 7, A1 z(t - TL) + B u'(t) 

1=1 

where x'(t) i s  an  N X 1 state vector, u'(t) i s  an m X 1 input vector, A and AI 
are N X N constant matrices,  B i s  an N X m constant matrix, and TL P 0 i s  a 
constant time delay. Equation (1) i s  a l inear differential-difference equation of the re- 
tarded type with constant coefficients and delays. For brevity, equation (1) i s  referred 
to as a retarded system. Mathematical t reatments  of retarded systems can be found in 
references 1, 9, and 10, for example. 
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Equation (1) i s  said to be stable if and only if the corresponding homogeneous 
equation 

M 
k(t) = A Z(t) + A2 Z(t - '2) c 

2=1 

i s  stable; that is, if all the roots s = u + iw of the characterist ic quasi-polynomial 

have negative real parts.  
approaches zero  as t - 00 (ref.  1). 

In this case,  the solution to  the homogeneous equation (2) 

Techniques of generalized harmonic analyses can be applied meaningfully to  the 
retarded system of equation (1) when equation (2) i s  stable (ref.  11). The stability of 
equation (2) i s  a lso inherently related to the asymptotic stability of some nonlinear con- 
t ro l  problems (ref. 10). Various methods have been proposed f o r  determining whether 
any of the roots  have nonnegative real par ts  (a 2 0); for  example, see references 8, 12, 
13, and 14. 

Class  of Retarded Systems 

Stability boundaries a r e  examined for the class  of retarded systems which has a 
characterist ic quasi -polynomial of the form: 

-8 1s -e 2~ 
L(s) = P(s) + Q(s)  e + R(s) e (4) 

where 

j = O  
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The real nonnegative constants 0 1  and 02 will be re fer red  t o  as delays although 

they may be some linear combination of the actual t ime delays 72 in equation (1). Some 
examples of retarded systems with characterist ic quasi-polynomials of the form of equa- 
tion (4) are given in appendix A. 

The stability condition (stable or  unstable) of a retarded system with characterist ic 
quasi-polynomial equation (4) is the same as the same  system with zero  delays 
(81 = 82 = 0), if the values of 0 1  and 0 2  in equation (4) are sufficiently small .  This 
initial stability condition i s  determined by setting 81  = 82 = 0 in equation (4) and then 
examining the roots of the resulting polynomial 

If the degree of the polynomial equation (5) i s  N and if the delays 0 1 and 82 are 
sufficiently small ,  then the quasi-polynomial equation (4) has N roots very close to the 
N roots of equation (5), and the remaining infinity of roots have very large negative real 
par t s  (refs. 8 and 13). 
tained in reference 4 and 15. 

Additional information on the roots of quasi-polynomials i s  con- 

As the delays are varied in some continuous manner from essentially zero,  the 
roots of the quasi -polynomial equation (4) move continuously and generate an infinite 
number of continuous root-locus curves in the complex root plane; that is ,  in the uw- 
plane, s = u + i o  satisfies L(s) = 0. (See appendix B.) Clearly, it is impossible to  
plot all the root-locus curves of equation (4) for  a given continuous variation of the de-  
lays, It is possible, however, to  determine the number of roots with positive real pa r t s  
as the delays are varied by examining the behavior of the root -locus curves on the imag- 
inary axis. This approach i s  used in reference 8. 

Partitioning Delay Space Into Stable or Unstable Regions 

Root-locus curves are generated by the roots  of equation (4) as the delays are 
varied. If a root -locus curve comes into contact with, o r  crosses ,  the imaginary axis 
at w (touch point), then by definition, s = i o  satisfies 

(6) -iw0 1 - i d 2  - L(io)  = P(iw) + &(io) e + R(iw) e - 0  
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Since the root-locus curves are symmetrical  about the real axis, only w 2 0 values are 
cons ide r ed. 

Equation (6) can be considered as two equations (real  and imaginary par t s )  in two 

For  example, in refer- 
unknowns. The two unknowns which are chosen vary with the different methods which 
have been used to  examine the stability of systems with delays. 
ence 6, 8 2  = 0 and the two unknowns are w and 81; in Neimark's method (ref. 14), 
the delays are held fixed, and the two coefficients are chosen as the unknowns with o 
as a coordinating parameter ;  in reference 16, the unknowns are a delay and a coefficient 
o r  gain. In the present study, the two unknowns are 8 1  and 8 2  with w as a coor- 
dinating parameter.  

A vector representation of the complex quantities appearing in equation (6) is shown 
in figure 1. The two distinct solution sets to equation (6) are shown graphically in fig- 
u r e  2. From the geometric properties of a triangle, it follows that a solution t o  equa- 
tion (6) exists if and only if the following three relationships simultaneously hold: 

lP(iw)l + (Q(iw)l 2 (R(iw)( (7) 

These relations express  the fact that the sum of the lengths of any two s ides  of a triangle 
must be greater  than or  equal to  the length of the remaining side. An equality sign in 
either of equations (7), (8), or (9) corresponds to collinear vectors. 

It follows by using figure 1 that the angles r and q in figure 2(a) are given by 

r = n - a r g  P( io)  + a r g  Q(iw) - we1 

and 

q = n  - p + y  

q = ?T - arg P(io) + arg R(iw) - w02 
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Now, solving equation (10) f o r  8 1 and equation (11) for 82 gives 

8 1 = ;[n- 1 - a r g  P(iw) + a r g  Q(io) - r] 

and 

82 = -[n- 1 - a r g  P ( i w )  + a r g  R(iw) - s] 
0 

The angles r and q are obtained from figure 2(a) by applying the law of cosines as 

and 

Choosing 0 5 cos- 1 y- 5 n- and using the geometry in figure 2(a) gives 1 -  

8 1 = - n- - a r g  P(iw) + a r g  Q(iw) - cos - l  y1 + 2n-K1 (16) w '[ 1 
and 

I (17) 82 = -[n- 1 - a r g  P ( i w )  + a rg  R(io) + cos - l  y2 + 2rK2 0 

where K1 and K2 are integers. 

Using the geometry in figure 2(b) gives 

1 8 1  = -[n 1 - a r g  P ( i w )  + a r g  Q(iw) + cos- l  y1 + 2aV1 w 

and 
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82 = 0 71 - a r g  P(iw) + a r g  R(iw) - cos-l y2 + 2rv2] '[ 
where V1 and V2 are integers. A solution t o  equation (6) exists if and only if 81  
and 82  satisfy the pair  of equations (16) and (17) o r  the pair  of equations (18) and (19). 

Combination values of 81 and 82 for  which a root-locus curve touches the 
imaginary axis can be determined by plotting 81 and 82 against w.  Alternately, 82 
can be plotted directly against 61 for  corresponding values of w.  This latter type of 
figure is actually a partitioning of the delay space into regions of stability (stable or un- 
stable). It should be noted that Neimark's D-partition methods (ref. 14) can be used t o  
construct regions of stability in the plane of two real  parameters  (gains o r  coefficients) 
which occur linearly in the characterist ic quasi-polynomial fo r  fixed delays. Other 
methods, developed within the last decade, are discussed briefly in reference 17. 

The stability region for the smallest  values of delays may be all that i s  required 
to show that the delays are not large enough t o  make the system unstable or to  indicate 
how much the delays can be increased before the system becomes unstable. 

Special Values of w 

There are certain values of w which are useful in evaluating the equations for 

Upper bound on w.- An upper bound on w can be computed by using equation (6). 
The dominant power on w occurs,  by definition, in P(iw); hence, let w = Wm be the 
largest  positive real root of the equation 

Then, t follows that w 5 wm in equation (6) and in the per,,.ient pair  of equations 
81  and 82. 

or  

Border values of w. -  Partitioning curves a re  defined only for  those values of w 

which satisfy equations (7) to  (9). These meaningful values of o are determined by 
using border values of w.  A border value of w i s  defined as a nonnegative real value 
of w which satisfies any of the equality relations in equations (7) to  (9), which are: 
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These equality relationships a l so  follow by setting cos r = *1 or  cos (-9) = *1 in equa- 
tion (14) o r  (15), respectively. 

The finite number of border values separates  the w space into different intervals. 
To  determine if a partitioning curve is defined for values of w in an interval, evaluate 
cos r or  cos (-9) at some value of w within the interval. If, for  example, [cos  r]  5 1, 
then partitioning curves exist for  all values of w in the interval. On the other hand, if 
I cos rl > 1, the partitioning curves do not exist for  any value of w in the interval. The 

maximum border value will be equal t o  wm. 

Multiple Touch Points 

Multiple touch points occur when more than one root -locus curve touches the 
imaginary axis for  the same values of w,  81, and 82. In this case, the points on the 
partitioning curves correspond to  purely imaginary roots  of the characterist ic quasi - 
polynomial which have multiplicities greater  than unity. 
a procedure used in reference 8 i s  adapted la ter  to  examine the stability condition of 
regions established by the partitioning curves. This procedure, however, i s  presented 
in reference 8 and in this paper on the assumption that the touch point, where the proce-  
dure i s  applied, i s  simple. This condition i s  easily checked by using the partitioning 
equations. 

Because of i t s  intuitive appeal, 

By construction, s = iw is a root of the characterist ic quasi-polynomial for  any 
point (81,Oz) i n  the delay space which l ies on a partitioning curve. The questions is: Is 
s = iw a simple or multiple root? 

Differentiating equation (4) with respect to  s gives 

d L = d P + ( $ - Q l Q ) e  + ( z - 8 2 R ) e  dR -e 2~ 
d s  ds 

The value of dL/ds a t  a point (e l ,e2)  on a partitioning curve i s  given by equation (24) 
with s = i o  and with 81 and 82 computed by using the partitioning equations. If 
dL/ds # 0 at this point, then s = io is a simple root; otherwise, it  i s  not. 

Stable and Unstable Regions in Delay Space 

The delay space i s  partitioned into regions which are ei ther  stable o r  unstable by 
the 82  versus 81. The stability of each of these regions can be determined by com- 
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puting the initial stability of the system using equation (5) and evaluating the derivative, 
on a partitioning curve, of the real par t  of s = G + iw with respect to  one of the delays 
while holding the other delay constant. 

Select one of the delays 8 1  or  82 to be held fixed. For discussion purposes, 
denote this  delay by 81 (1 = 1 o r  2) and the remaining delay by 8k (k # 1 ;  k = 1 or 2). 

It is assumed that the purely imaginary root i s  simple (dL/ds # 0) at a point on the 
partitioning curves. Moreover, suppose that at this point ano/88kn = 0 for 
n = 0, 1, . . ., g - 1; but that 8go/a8kg # 0. Then, if agc/aOkg > 0 and g i s  an odd 
integer, the sytem gains a root with positive real  pa r t  when the point (8k,82) i s  varied 
from a partitioning curve in the direction of increasing 8k. 
and g is an odd integer, the system loses  a root with positive real part .  If 
ago/a8$ # 0 and g is an  even integer, then the root-locus curves are tangent to  the 
imaginary axis, so that the system neither gains nor loses any roots with positive real 
par ts .  

Likewise, if ago/a8kg < 0 

For convenience the characterist ic quasi -polynomial i s  written as 

The characterist ic equation is then 

Applying implicit differentiation to  equation (26) and extracting the real par t  of as/a8k 
gives 

where the par t ia l  derivatives Lek = aL/Mk and LS = aL/as  are obtained by using 
equation (25) and R denotes the real par t  of the complex number in parentheses. 

The derivative in equation (27) is evaluated on a partitioning curve by setting 
s = i w  in equation (27) and using the partitioning equations t o  obtain 81 and 8k. This  
derivative then gives the change in the real par t  of the characterist ic root when leaving a 
partitioning curve at (81,Ok) in the direction of increasing 8k. 

If ao/af3k = 0, then a s imilar  procedure is followed for  higher derivatives until 
ago/aekg+ 0. 
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Summary of Stability Procedure 

The procedure used to partition the delay space into different regions and to  iden- 
t ify the different regions as stable or unstable is  summarized in the following steps:  

(1) Compute t h e  initial stability of the system by using equation (5). 

(2) Compute meaningful values of w by using equations (21) to (23). 

(3) Plot partitioning curves in the delay space by using 8 1  and 82 equations as 
w varies  over the predetermined range of acceptable values in step 2. 

(4) If the delays do not c ross  a partitioning curve (in the plot of step 3) as they are 
var ied in combination from zero  to  their  final desired values, then the retarded system 
with characteristic quasi -polynomial of the form of equation (4) maintains i ts  initial sta- 
bility. However, if the delays cannot be varied to  their  final values without crossing a 
partitioning curve, compute the multiplicity of the touch points and the derivative of the 
real p a r t  of s = G + i o  as the curve i s  crossed. Use  equations (24) and (27). 

The stability on each side of a partitioning curve i s  determined by counting the 
number of roots with positive real par t s  as the curves are crossed. Stability boundaries 
are those curves which partition the delay space into stable and unstable regions. 

EXAMPLE 

To clarify the stability analysis presented in the previous section, the following 
example is examined: 

-x(S) d2 + 2~ -x(S d - e l )  + x ( C  - e2)  = 0 
df dt 

where 5 > 0 i s  a real constant damping parameter ,  and the delays 0 1 and 02 are 
nondimensional. This example i s  examined in reference 8 in a different manner. 

The characterist ic quasi-polynomial for  equation (28) i s  

-e 1~ -e 2s L(s) = P(s) + Q(s)  e + R(s) e 

where 

R(s) = 1 



The initial stability of the retarded system i s  found by using equation (5), which is 

1 
02 = - w 

LO(S) = s 2  + 2cs + 1 (30) 

2 2  4 c w  + 1  
-cos-1 p4 - 2w2 ) + 2nV2 

Since 5 > 0, the roots of Lo(s) have negative real  parts,  so  that the retarded system 
i s  initially stable. 

Setting s = iw in equation (29) gives 

Q(iw) = 2coi 

R(iw) = 1 

The f i r s t  pair  of equations for the delays 0 1  and 82 (eqs. (16) and (17)) becomes 

and 

r 1 

The second pair  of equations for 8 1  and 82 (eqs. (18) and (19)) becomes 

and 

(34) 
L J 
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An Upper Bound and Border Values of w 

An upper bound Wm.- The upper bound of w is  obtained by using equation (20), 
which becomes 

w 2  - 2cw - 1 = 0 (35) 

The largest  rea l  nonnegative value of w which satisfies equation (35) i s  denoted by w,. 
In this case,  

= c + d i G  (36) 

Border values of w.-  The border values of w are obtained by using the relations 
in equations (21), (22), and (23), which become 

(37) w 2 + 2 c w - 1 = 0  

w2 - 2cw + 1 = 0 (38) 

w2 - 2cw - 1 = 0 (39) 

Notice that equation (39) is  the same  as equation (35), so  that wm 
Other border values a r e  obtained from the solutions of equations (37) and (38) which are, 
respe ct ivel y, 

i s  a border value. 

Only the positive radical in equation (40) is  of interest  since w 2 0. 
only of interest when 

Equation (41) i s  
P 1. 

Specific Calculations 

The border values and upper bound of w are shown in table I for  damping param-  
e te r  values 5 of 0.2, 0.5, and 1. 
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TABLE I.- BORDER VALUES AND UPPER BOUND OF w 

Damping parameter ,  5 

0.2  

.5 

1 .o 

~~~~ 

Border values of w 

0.82 
1.22 

.62 
1.62 

.4 1 
1.00 
2.41 

Upper bound, wm 

1.22 

1.62 

2.4 1 

Figures 3 and 4 show the pa i r s  of the delays 0 1 and 02 which resul t  in a root- 
locus curve coming into contact with, or  crossing, the imaginary axis  in the complex root 
plane at w (touch point) for various values of (K1,Kz) and (V,,V2), respectively. Re- 
sul ts  are presented for < = 0.2, 0.5, and 1. 

The consecutive Kj curves in figure 3 and the consecutive Vj curves in fig- 
u r e  4 both differ by 2n/w, as shown by equations (31) to  (34). Thus, the V2 = 0 curve 
falls off the scale in figure 4. 

The terminal  points of the curves in figures 3 and 4 correspond to  a ze ro  delay o r  
t o  a border value in table I. All  border values, however, do not necessarily specify a 
terminal point on the curves. The value w = 1 is a border value that occurs  along the 
curves in figures 3(c) and 4(c) and is identified by a singularity in the slope of the curves 
at this value. 

Figures 3 and 4 can be used t o  obtain the touch points w which occur as the delays 
are varied in some continuous manner f rom zero to their  final constant values. The 
touch points clearly depend on the manner in which the delays are varied. 

A partitioning of the delay space resul ts  when 82 i s  plotted directly against 01 
with w as a coordinating parameter,  as shown in figure 5. The solid curves correspond 
to  various values of (K1,Kz) and are generated by using the pair  of equations (31) and (32). 
The dashed curves correspond t o  various values of (V1,V2) and are generated by using the 
pair  of equations (33) and (34). 
the delay space into regions. 
ing w. 

The totality of curves for  (K1,Ka) and (V1,Vz) partition 
The arrows on the curves denote the direction of increas- 

Since the system is  initially stable, it wi l l  remain stable until the curve 
(K1,Kz) = (0,O) in figure 5 is touched. To examine the stability beyond this  point re- 
qui res  the determination of the multiplicities of the touch points and the changes in the 

. 
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real pa r t s  of the root-locus curves as they pass  beyond the touch point. 
shown in figure 5 can be entered by crossing one of the solid curves corresponding to  
(K1,K2); hence, only these curves need to be examined further.  

It can be shown by setting s = i o  in equation (24) and using equations (29), (31), 
and (32) that dL/ds # 0 on any of the (K1,Kz) solid curves of figure 5 .  Hence, the mul- 
tiplicity of all touch points i s  unity. 

Al l  the regions 

The change in the stability at a touch point i s  examined by using equation (27) with 
8k  = 8 1  and 81 = 82. Reference 8 expresses  equation (27) fo r  this particular application 
in a very simple form which i s  equivalent to 

c2 -E = w4 + 03e2 sin w e 2  - 1 
a 0 1  

where 

The scaled derivative C2 (au/aO 1) has the same  sign as 8o/a0 1. The scaled derivative 
on the (K1,Kz) curves in figure 5 i s  evaluated by using equation (32) to  obtain 82. Since 
81  does not appear in equation (42), the scaled derivative is the same for  all curves 
(K1,Kz) which have the same K2 value. The scaled derivative is  plotted in figure 6 as 
a function of 02 for  three values of K2, which are 0, 1, and 2. The a r rows  on the 
curves indicate the direction of increasing w. The K2 = 0 curve in figure 6 applies to 
the (O,O),  ( l , O ) ,  (2,0), and (3,O) curves in figure 5; the K2 = 1 curve applies to the ( O , ! ) ,  
(l,l), and (2 , l )  curves; and the K2 = 2 curve applies to the (0,2), (1,2), and (2,2) curves,  

Figure 6 i s  used to determine the stability condition on each side of the partitioning 
curves in figure 5. The ar rows  on the curves denote increasing values of w and are 
used for corresponding values of the scaled derivative with points on the partitioning 
curves. For instance, suppose 82 = 0.2 on the (K1,Kz) = (0,O) curve in figure 5, then 
the corresponding value of scaled derivative in figure 6 is 0.98. This correspondence i s  
established by noting that 02 decreases  f r o m  8 2  = 0.2 with increasing w .  Now, 
since C2(au/a81) > 0 on (K1,K2) = (0,O) when 82 = 0.2, it follows that proceeding off 
the (K1,K2) = (0,O) curve in figure 5, with 82 = 0.2, in the direction of 01,  resul ts  in 
the gain of a root with positive real part .  The system, therefore, becomes unstable. 

I 

Next, consider the curve (K1,K2) = (1 ,O)  in figure 5. It can be shown by using 
figure 6 that entering the lower triangular region from the left resul ts  in the loss  of a 
root with positive real part ,  so that the system becomes stable again. Upon leaving the 
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triangular region on the right, however, a root with positive real par t  i s  gained, and the 
system becomes unstable. 

Entering the upper looped portion of the curve (K1,K2) = (1 ,O) f rom the left 
resul ts  in the gain of a root with positive real part. So, inside the upper looped region, 
the system has two roots with positive real parts.  Leaving the upper looped portion of 
the curve on the right resul ts  in the loss  of a root with positive real part;  however, the 
system had two roots  with positive real pa r t s  inside the looped portion of the curve, and 
is, therefore, still unstable. 

This type of reasoning is repeated for the other regions of figure 5. It is found 
that there  a r e  only two stable regions in figure 5. These are the initial stability 
region bounded by the curve (K1,Ka) = (0,O) and the lower triangular region of the 
(K1,Kz) = (1 ,O)  curve. 

equation (28) when < = 0.2, 0.5, and 1. 
boundaries. 

Figure 7 shows the stability boundaries for  the retarded system represented by 
The hatched lines indicate the stable side of the 

These resul ts  are in agreement with those of reference 8. 

It i s  well known that the solution of equation (28) becomes more  highly damped as 
< increases  if 8 1  = 82 = 0. If 81  f 0, this may not be the case, as shown in figure 7.  
For  example, let 82 = 0 and 8 1  = 0.8. Then, the solution of equation (28) is stable for 
5 = 0.2 and unstable for  < = 1. 

CONCLUDING REMARKS 

A new method is developed for  generating stability boundaries for  differential- 
difference equations of the retarded type with constant coefficients and two constant de- 
lays. The basis of the method consists in deriving analytical equations for  each of the 
delays which correspond to  the purely imaginary roots of the characterist ic quasi- 
polynomial. These analytical equations are then used to  partition the delay space into 
regions which are stable or  unstable. 

Each point on a partitioning curve corresponds t o  a root-locus curve touching o r  
crossing the imaginary axis in the complex root plane. The stability of the different re- 
gions, therefore, is  examined by computing the initial stability of the equations (zero 
delays) and counting the number of root -locus curves with positive real par t s  as the dif - 
ferent regions are entered. The analytical equations mentioned previously a r e  used in 
counting the number of root-locus curves with positive r ea l  par ts .  Specifically, the ana- 
lytical equations are used in computing the multiplicities of the root-locus curves and the 
partial  derivative of the rea l  part  of the root-locus curves with respect to one of the 
delays. 
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The method developed i s  used to  analyze the stability of a second-order differential 
equation with delays in the velocity and displacement terms.  The resulting stability 
regions are  in agreement with those obtained by other investigators. 

Langley Research Center 
National Aeronautics and Space Administration 
Hampton, Va. 23665 
September 12, 1975 
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APPENDIX A 

EXAMPLES OF RETARDED SYSTEMS WITH TWO DELAYS 

The following examples show retarded systems which have characterist ic quasi - 
polynomial equations of the form of equation (4): 

Example 1: 
t ime delays 71 2 0 and 72 2 0: 

Consider the following sca la r  differential equation with two constant real 

cn x(")(t - 72) = f(t) 
N N-1  2 an x(N)(t) + 2 bn X(")(t - 71) + 

n= 0 n=O n=O 

where x(")(t) denotes the nth derivative of x(t) and f(t)  i s  a continuous input func- 
tion of time. The coefficients an, bn, and Cn are  real constants. Equation (Al)  can 
be written in the form of equation (1); however, this is unnecessary in obtaining the 
characterist ic quasi  -polynomial. The characteristic quasi -polynomial associated with 
equation (Al )  i s  equation (4) with 

P(S) = 2 ansn 
n=O 

Q(s)  = bnSn 
n= 0 
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APPENDIX A 

Example 2: 
one distinct delay as follows: 

Let the retarded system be described by two coupled l inear equations with 

The characteristic quasi -polynomial associated with equation (A2) i s  given again by 
equation (4) with 

Q(S) = - ( b l l  + b22b  + "llb22 + a22b11 - a21b12 - a12b21 

Note that although there  is only one t ime delay r in equation (A2), there  are two delays 
8 1 and 02 in the associated characterist ic quasi-polynomial. 

An equation such as equation (A2) occurs in examining airplane stability for  the 
controls-fixed case of reference 5 which is modeled in reference 11. Here, r accounts 
for  the fact that a vertical gust affects the horizontal tai l  later than it does the wing. It 
can be shown also that the characterist ic quasi-polynomial for the controls-free case of 
reference 5 has the form of equation (4) with 8 1  = T and 02 = 27. 

Example 3: A characterist ic quasi-polynomial which occurs in epidemics (ref. 18) i s  
given by equation (4) with 

P(s) = T ~ ( S  + a) e l  = T1 

Q(s) = -1 e 2  = T1 + 7 2  

R(s) = 1 
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APPENDIX B 

ROOTS OF QUASI-POLYNOMIAL AS CONTINUOUS FUNCTIONS OF DELAYS 

Theorem: 
continuous functions of 

Proof: The quasi-polynomial L(s,Oj) i s  an  analytic function, s o  that i ts  roots  are iso- 
lated. Let s* be any one of the roots  of L(s,Oj) and let p be a positive number 
such that the only root of contained inside the contour Is - s*l  = p i s  s*.  A 

can be used to show that for  Taylor s e r i e s  expansion of the exponential t e rm e 
every E > 0, there  exists a 6 ( ~ )  > 0 such that 

The roots  of the quasi-polynomial L(s,Oj), where j = 1, 2, . . ., N, are 

0 j . 

L(S,Oj) -ejs 

IL(s,Oj) - L(s,Oj + AOj)l < E 

for 1s - s*(  5 p whenever AOj < 6 ( ~ ) .  Choose E < minlL(s,Oj)l on Is - s*l = p then 

(L(s,Oj) - L(s,0j + AOj)l < E < IL(s,Oj)l 

for AOj sufficiently small  and 1s - s*I 5 p. By Rouche's theorem (ref. 19), L(s,Oj) 
and L(s,Oj + AOj) have the same number of roots inside the circle 
p can be made arbi t rar i ly  small ,  it follows that the roots of must move con- 
tinuously with O j .  

Is - s*l = p. Since 

L(s,Oj) 
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Figure 1. - Complex quantities and angles. Angles a r e  measured positive 
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Figure 2. - Graphical representation of the two distinct solution se t s  for equation (6). 
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Figure 3. - P a i r s  of values of the delays 81  and 82 which resul t  in a touch point 
for  various values of K1 and K2. 
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